1,556 research outputs found

    Fluid-structure interactions of anisotropic thin composite materials for application to sail aerodynamics of a yacht in waves

    No full text
    In recent years technological innovations has allowed large improvements to be made in sail design and construction. Sails and in particular kite-sails have application for sport, ships’ auxiliary propulsion and even power generation. Sails are divided into upwind and downwind sails (Fig.1), where upwind sails operate as lifting surfaces with small angles of attack whereas traditional downwind sails acted as drag device. New designs of downwind sails have reduced the area of separated flow and increased the lifting behaviour of the sails. In order to capture the lifting behaviour and regions of separation present in both types of sail careful application of computational fluid dynamic analysis tools are required. Solutions of the Reynolds averaged Navier- Stokes equations (RANSE) are often used as a part of the design process of high performance sailing yachts.The present paper discusses some initial investigations and future guidelines in order to get a more detailed description of the physics involved in sail FSI. Three main fields are therefore covered: the use of CFD in order to accurately capture flow features and a comparison with experimental results; structural modelling; and approach to couplin

    Dynamical fluctuations in the one particle density - comparison of different approaches

    Full text link
    Diffusion coefficients are obtained from linear response functions and from the quantal fluctuation dissipation theorem. They are compared with the results of both the theory of hydrodynamic fluctuations by Landau and Lifschitz as well as the Boltzmann-Langevin theory. Sum rules related to conservation laws for total particle number, momentum and energy are demonstrated to hold true for fluctuations and diffusion coefficients in the quantum case.Comment: 23 pages, Latex, accepted for publication in Nucl. Phys.

    Implicit integration for the solution of metal forming processes

    Full text link
    The simulation of metal forming processes is performed using implicit integration analysis procedures. The approach is based on reliable and efficient solution procedures, uses the actual physical simulation parameters (that is, no adjustment of the tool velocity or work piece density is employed) and enables to achieve accurate results of the loading and spring-back processes in a single solution run. In the analyses performed, the solution times were not far from (and frequently less than) those required in explicit time integration analyses

    Application of the arbitrary Eulerian Lagrangian finite element formulation to the thermomechanical simulation of casting processes, with focus on pipe shrinkage prediction

    No full text
    International audienceThe Arbitrary Lagrangian-Eulerian formulation (ALE) has become an indispensable component of finite element thermomechanical computations of casting processes. As it is an intermediate formulation between the Lagrangian formulation (material convected mesh) and the Eulerian one (fixed mesh), it allows the simultaneous computation of important phenomena: Deformation and stresses affecting solidified regions, yielding the computation of air gap evolution at part/mold interfaces. In such regions, the formulation is essentially Lagrangian. Thermosolutal convection flow in the non solidified regions; here the ALE formulation tends to a pure Eulerian one (stationary mesh). Free surface evolution at top of risers, leading to the prediction of pipe defects (macroshrinkage). In this case the ALE formulation allows the follow up of the free surface. After a brief reminder of the constitutive equations to be used in thermomechanical modeling of solidification, the mechanical equations are presented and their resolution in the context of FEM-ALE. We insist on the transport analysis, a key-point of ALE, and present a validation of the original scheme that is used here. Finally, we focus on the prediction of pipe shrinkage formation and show two industrial examples

    Thermodynamical framework for modeling chemo-mechanical coupling in muscle contraction – Formulation and preliminary results

    Get PDF
    International audienceWe propose a multiscale model of cardiac contraction in which the molecular motors at the origin of the contractile process are considered as multistable mechanical entities endowed with internal degrees of freedom of both mechanical and chemical nature. This model provides a thermodynamical basis for modeling the complex interplay of chemical and mechanical phenomena at the sub-cellular level. Important motivations for this work include the ability to represent the experimentally observed physiological characteristics of the contractile apparatus such as (i) the passive quick force recovery mechanism, (ii) the relation between the contraction velocity and the applied force and (iii) the so called Lymn-Taylor cycle describing the metabolism.Nous proposons un modÚle multi-échelle de la contraction cardiaque dans lequel les moteurs moléculaires à l'origine du processus contractile sont représentés par des élé-ments mécaniques multistables paramétrés à la fois par des degrés de liberté géométriques et par des états chimiques. Ce modÚle permet de poser les fondements thermody-namiques permettant de décrire l'interaction complexe entre les phénomÚnes mécaniques et chimiques a l'échelle sub-cellulaire. Ce travail a pour objet de représenter les car-actéristiques physiologiques du dispositif contractile observées expérimentalement et en particulier (i) le mécanisme passif de récupération rapide de force, (ii) la relation entre la vitesse de contraction et la charge appliquée et (iii) le cycle dit de Lymn-Taylor décrivant l'activité métabolique. Abstract : We propose a multiscale model of cardiac contraction in which the molecular motors at the origin of the contractile process are considered as multistable mechanical entities endowed with internal degrees of freedom of both mechanical and chemical nature. This model provides a thermodynamical basis for modeling the complex interplay of chemical and mechanical phenomena at the sub-cellular level. Important motivations for this work include the ability to represent the experimentally observed physiological characteristics of the contractile apparatus such as (i) the passive quick force recovery mechanism, (ii) the relation between the contraction velocity and the applied force and (iii) the so called Lymn-Taylor cycle describing the metabolism

    Optimal treatment allocations in space and time for on-line control of an emerging infectious disease

    Get PDF
    A key component in controlling the spread of an epidemic is deciding where, whenand to whom to apply an intervention.We develop a framework for using data to informthese decisionsin realtime.We formalize a treatment allocation strategy as a sequence of functions, oneper treatment period, that map up-to-date information on the spread of an infectious diseaseto a subset of locations where treatment should be allocated. An optimal allocation strategyoptimizes some cumulative outcome, e.g. the number of uninfected locations, the geographicfootprint of the disease or the cost of the epidemic. Estimation of an optimal allocation strategyfor an emerging infectious disease is challenging because spatial proximity induces interferencebetween locations, the number of possible allocations is exponential in the number oflocations, and because disease dynamics and intervention effectiveness are unknown at outbreak.We derive a Bayesian on-line estimator of the optimal allocation strategy that combinessimulation–optimization with Thompson sampling.The estimator proposed performs favourablyin simulation experiments. This work is motivated by and illustrated using data on the spread ofwhite nose syndrome, which is a highly fatal infectious disease devastating bat populations inNorth America

    Validity Arguments for Diagnostic Assessment Using Automated Writing Evaluation

    Get PDF
    Two examples demonstrate an argument-based approach to validation of diagnostic assessment using automated writing evaluation (AWE). Criterion ¼, was developed by Educational Testing Service to analyze students’ papers grammatically, providing sentence-level error feedback. An interpretive argument was developed for its use as part of the diagnostic assessment process in undergraduate university English for academic purposes (EAP) classes. The Intelligent Academic Discourse Evaluator (IADE) was developed for use in graduate EAP university classes, where the goal was to help students improve their discipline-specific writing. The validation for each was designed to support claims about the intended purposes of the assessments. We present the interpretive argument for each and show some of the data that have been gathered as backing for the respective validity arguments, which include the range of inferences that one would make in claiming validity of the interpretations, uses, and consequences of diagnostic AWE-based assessments

    Effect of fibre configurations on mechanical properties of flax/tannin composites.

    Get PDF
    Flax reinforced tannin-based composites have a potential to be used in vehicle applications due to the environmental advantages and good mechanical properties. In this paper, the effects of fibre configuration on mechanical properties of flax/tannin composites were investigated for nonwoven and woven fabric lay-up angles (UD, [0°, 90°]2 and [0°, +45°, 90°, -45°]2). The tannin/flax composites were prepared by compression moulding. The manufactured specimens were then characterized for quasi-static tensile properties, dynamic mechanical properties and low-energy impact performance. Failure mechanism was further investigated using microscopy and demonstrated the need for further adhesion improvements. The study shows that the UD fabric reinforced composite performs better in tensile strength and modulus whereas [0°, +45°, 90°, -45°]2 composite provides the best impact energy absorption performance
    • 

    corecore